In the early days of its (modern) history game theory focused a lot on zero-sum games. These are games in which total payoffs always add to zero no matter what the outcome. So, in a two player setting - your gain is my loss and vice-versa. It was arguably natural for game theory to focus on zero-sum games because they represent the epitome of conflict. The main reason the focus fell on such games is, however, more one of convenience - zero-sum games have a solution . This solution is captured by the minimax theorem and all that followed. Basically it amounts to saying that there is a unique way of playing a zero-sum game if all players want to maximize their payoff and are rational . Most games do not have a 'solution', because there are multiple Nash equilibria and so there is not an obvious correct way to play the game. In this sense zero-sum games are 'nice' or 'convenient'. But does it make sense to behave according to the minimax theorem? The simple an
Some random thoughts on game theory, behavioural economics, and human behaviour