Skip to main content

How to get rid of an incompetent manager?

In a paper, recently published in the International Journal of Game Theory, my wife and I analyze a game called a forced contribution threshold public good game. A nice way to illustrate the game is to look at the difficulties of getting rid of an incompetent manager.
         So, consider a department with n workers who all want to get rid of the manager. If they don't get rid of him then there payoff will be L. If they do get rid of him then there payoff will be H > L. But, how to get rid of him? He will only be removed if at least t or more of the workers complain to senior management. For instance, if a majority of staff need to complain then t = n/2.
        If t or more complain then the manager is removed and everyone is happy. The crucial thing, though, is what happens if less than t complain. In this case the manager will remain and any workers that did complain will face recrimination. To be specific suppose that the cost of recrimination is C. Then potential payoffs to a worker called Jack are as follows:

If t or more complain then Jack gets payoff H.
If Jack complains but not enough others do then he gets payoff L - C.
If Jack does not complain and others don't either then he gets payoff L.

Note that this game is called a 'forced' contribution game because, if the manager is removed, Jack's payoff does not depend on whether or not he complained. This contrasts with a standard threshold public good game in which those who do not contribute (i.e. complain) always have a relative advantage. Hence, there is a sense in which every worker is 'forced to contribute' if the manager is removed.
         The fear of recrimination is key to the game and going to be the potential source of inefficiency. In particular, if Jack fears that others will not complain then it is not in his interest to complain either. Hence we can obtain an inefficient equilibrium in which nobody complains and the manager carries on before. This is not good for the workers and presumably not good for the firm either. So, how can this outcome be avoided?
      In our paper we compare the predictions of three theoretical models and then report an experiment designed to test the respective predictions. Our results suggest that the workers will struggle to get rid of the manager if
This means that the threshold t should not be set too high. For instance, if a simple majority is needed to get rid of the manager, and so t = n/2, then we need H to about 25% higher than L. If less than a majority is enough then H does not need to be as high. This result would suggest that it is relatively simple to have a corporate policy that would incentivise people like Jack to complain about his manager.
           Of course, in practice there are almost certainly going to be some who will defend the manager and so things become more complex. Moreover, there are likely to be significant inertia effects. In particular, the 'better the devil you know' attitude may lead workers to underestimate the difference between H and L. Also senior managers may set t relatively high because of a desire to back managers. These are all things that will make it less likely Jack complains and more likely the incompetent manager continues. Firms, therefore, need to strike the right balance to weed out inefficiency.          

Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Measuring risk aversion the Holt and Laury way

Attitudes to risk are a key ingredient in most economic decision making. It is vital, therefore, that we have some understanding of the distribution of risk preferences in the population. And ideally we need a simple way of eliciting risk preferences that can be used in the lab or field. Charles Holt and Susan Laury set out one way of doing in this in their 2002 paper ' Risk aversion and incentive effects '. While plenty of other ways of measuring risk aversion have been devised over the years I think it is safe to say that the Holt and Laury approach is the most commonly used (as the near 4000 citations to their paper testifies).           The basic approach taken by Holt and Laury is to offer an individual 10 choices like those in the table below. For each of the 10 choices the individual has to go for option A or option B. Most people go for option A in choice 1. And everyone should go for option B in choice 10. At some point, therefore, we expect the...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...