Skip to main content

Honesty around the world

In my last post I looked at dishonesty in the banking industry. Sticking with a similar theme, this time I will at dishonesty across different countries.
       Let us start with a study by David Pascual-Ezama and a long list of co-authors on 'Context dependent cheating: Experimental evidence from 16 countries'. They asked 90 students in 16 different countries to perform a very simple task: toss a black and white coin and record the outcome. If the coin came up white the student obtained a red Lindt Lindor Truffle. If it came up black they got nothing. Crucially, the coin toss took place in private and so the student could report whatever outcome they wanted. If they wanted a chocolate then they simply had to report white. (The study contrasted three different methods of reporting - form put in a box, form given to the experimenter or verbally telling the experimenter - but I will skip those details here.)
          The chart below summarizes the country wide outcomes by focusing on the proportion of the 90 students in each country that 'won' the chocolate. The blue bars give the distribution we would predict if the students reported honestly. As you would expect the distribution is centered on a 50-50 success rate. Compared to this benchmark students were remarkably lucky. In all countries more than 50% of students won the chocolate and in some, such as Spain, the success rate was much higher than seems plausible. So, some students were dishonest (and hungry). Note, however, that the success rates are nowhere near the 100% we would expect if all students lied. So, many students were honest (or not so hungry). Indeed, we could conclude that most students were honest. There is also no compelling evidence of differences across countries. Spaniards won more than Danes but then someone has to come top and someone bottom. The differences we see here are not particularly large.  


 
Consider next a study by David Hugh-Jones on 'Honesty, beliefs about honesty, and economic growth in 15 countries'. In this case the subject pool in each country was a sample of the general population selected by a survey company and the prize was either $3 or $5 and not a chocolate. (The study also involved other measures of dishonesty and beliefs about dishonesty but I'll skip those here.) The findings are summarized in the next figure. The main thing to note is that we get a big swing to the right in those who 'won'. In other words there was a lot more dishonesty in this study. Moreover, the amount of dishonesty significantly varied across countries. Just how much we can read into this variation is not clear. For instance, the US and Canada come out as relatively dishonesty but that may reflect a willingness to 'game' the experiment rather than a predisposition to dishonesty in general life. Even so, it is shown that honesty correlates with GDP per capita and the proportion of the population that is protestant. This hints at cultural roots of honesty.



Which brings us to the final study I will mention, by Simon Gachter and Jonathon Schultz on 'Intrinsic honesty and the prevalence of rule violations across countries'. In this study students from 23 countries were asked to roll a six sided dice and report the outcome. Reporting a 1 earned 1 unit of payment (e.g. £0.50 in the UK), a 2 earned 2 units and so on up to 5 which earned 5 units, but reporting a 6 earned 0. Note that in this experiment a subject can lie 'a little' by say reporting 4 instead of 2 or lie 'a lot' by reporting 5 instead of 6. If subjects were honest the expected payment would be 2.5.  If they lied a lot the payment would be 5. As the figure below shows average payments were well above 2.5 and so there is evidence of dishonesty. Note, however, that payments were well below 5 and so there is, again, lots of honesty as well.




Cross country differences are not partly stark in the figure above. But another thing to consider is the proportion of subjects who reported a 6. Recall that this meant a payoff of 0 and so there was a strong incentive to lie 'a little' and get some payoff. (Indeed, to not report a 6 would seem analogous to miss-reporting the toss of a coin.) If subjects were honest around 16% should get 0. As the figure below shows in some countries, like Germany, subjects were very honest but in others, like Tanzania, they were not. And evidence for differences across countries is pretty strong. Overall, it is shown that cross country differences correlate strongly with an index of the prevalence of rule violations which captures things like corruption, tax evasion and fraudulent politics. This again points the finger at culture but also brings in the related issue of institutions. Countries with weak institutions see more dishonesty.


So, what to take from all this? One message I would take is that people are, on average, very honest. In all the three studies I have discussed there was more subjects behaved honestly than dishonestly. And let's recall that it was pretty easy for a subject to lie in these studies, both in a practical sense - they just needed to misreport - and in a moral sense - this was not robbing money from an old lady. It seems, therefore, that people the world over are pretty honest. But, that does not mean that dishonesty is not a problem. In my last post we saw that culture in the banking industry might encourage dishonesty. Here we see that culture in society might lead to greater dishonesty. A little bit of dishonesty can have large negative economic consequences.  

Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...

Prisoners dilemma or stag hunt

Over Christmas I had chance to read The Stag Hunt and the Evolution of Social Structure by Brian Skyrms. A nice read, very interesting and thought provoking. There’s a couple of things in the book that prompt further discussion. The one I want to focus on in this post is the distinction between the stag hunt game and the prisoners dilemma game.    To be sure what we are talking about, here is a specific version of both type of game. Adam and Eve independently need to decide whether to cooperate or defect. The payoff matrix details their payoff for any combination of choices, where the first number is the payoff of Adam and the second number the payoff of Eve. For example, in the Prisoners Dilemma, if Adam cooperates and Eve defects then Adam gets 65 and Eve gets 165. Prisoners Dilemma Eve Cooperate Defect Adam Cooperate 140, 140 65, 165 Defect 165,...