Skip to main content

Nash equilibria in the ultimatum game

The ultimatum game is one of the most well known and well studied games. Yet there still seems much confusion and misunderstanding over the basic theory behind the game. This is worrying because it means one of the key lessons we can learn from the ultimatum game goes unrecognised.
       In the ultimatum game a proposer and responder need to decide how to split, say, $10. The proposer moves first by making a take-it-or-leave-it-offer. The responder then either accepts the offer or rejects it. If he accepts it the deal is done. If he rejects both get nothing. For example, the proposer could offer $3. If the offer is accepted the proposer gets $7 and the receiver $3. If it is rejected both get $0. 
      What is going to happen? In the experimental lab the almost universal outcome is that the proposer offers $5 and this is accepted. We also know, although the evidence for this is less unequivocal, that offers of less than $5 can be rejected.  
       What does theory say should happen? Here is the standard version you can find in the textbooks: The responder should accept any positive offer - because something is better than nothing. The proposer should, therefore, offer $0.01.
        The $0.01 'prediction' is clearly well wide of the mark. That leads many to the basic claim that 'game theory is wrong!'.
      Things, however, are far more complicated than that (even if we ignore social preferences). The standard prediction corresponds to the sub-game perfect Nash equilibrium of the game. There are though many other Nash equilibria. Indeed any offer is consistent with Nash equilibrium.
      To illustrate, suppose the responder will reject any offer less than, say, $5 and the proposer knows this. Then the proposer should offer $5. In other words, 'offer $5 and reject any offer less than $5' is a Nash equilibrium. This equilibrium is not sub-game perfect because it involves an incredible threat from the responder that he will reject an offer below $5. There is, though, no necessity that threats be credible.
       The behaviour we observe in the ultimatum game is, therefore, consistent with Nash equilibrium. Game theory is not wrong! We do need to question the relevance of sub-game perfection. But, sub-game perfection is only one of many equilibrium refinements that have been suggested by game theorists over the years. Sub-game perfection seems ill-suited to the ultimatum game. More suitable seems a refinement based on fairness principles or focal points (as advocated by Thomas Schelling in the The Strategy of Conflict way back in 1960).
       The ultimatum game is not the only challenge to sub-game perfection. Somewhat worryingly, however, sub-game perfection is still far and away the most common refinement concept used in economics. For instance, virtually every theoretical paper in industrial organization solves for the sub-game perfect Nash equilibrium. How reliable are the predictions from such an approach likely to be? Probably not very reliable at all.
          The way that game theory is applied may, therefore, need something of an overhaul. We certainly need to give consideration to Nash equilibria that are not sub-game perfect.

Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...

Prisoners dilemma or stag hunt

Over Christmas I had chance to read The Stag Hunt and the Evolution of Social Structure by Brian Skyrms. A nice read, very interesting and thought provoking. There’s a couple of things in the book that prompt further discussion. The one I want to focus on in this post is the distinction between the stag hunt game and the prisoners dilemma game.    To be sure what we are talking about, here is a specific version of both type of game. Adam and Eve independently need to decide whether to cooperate or defect. The payoff matrix details their payoff for any combination of choices, where the first number is the payoff of Adam and the second number the payoff of Eve. For example, in the Prisoners Dilemma, if Adam cooperates and Eve defects then Adam gets 65 and Eve gets 165. Prisoners Dilemma Eve Cooperate Defect Adam Cooperate 140, 140 65, 165 Defect 165,...