Skip to main content

Does a picture make people more cooperative

In a standard economic experiment the anonymity of subjects is paramount. This is presumably because of a fear that subjects might behave differently if they knew others were 'watching them' in some sense. In the real world, however, our actions obviously can be observed much of the time. So, it would seem important to occasionally step out of the purified environment of the standard lab experiment and see what happens when we throw anonymity in the bin.
        A couple of experiments have looked at behavior in public good games without anonymity. Let me start with the 2004 study of Mari Rege and Kjetil Telle entitled 'The impact of social approval and framing on cooperation in public good games'. As is standard, subjects had to split money between a private account and group account, where contributing to the group account is good for the group. The novelty is in how this was done.
      Each subject was given some money and two envelopes, a 'group envelope' and 'private envelope', and asked to split the money between the envelopes. In a no-approval treatment the envelopes were then put in a box and mixed up before they were opened up and the contributions read out aloud. Note that in this case full anonymity is preserved because the envelopes are mixed up. In an approval treatment, by contrast, subjects were asked to publicly open their envelopes and write the contribution on the blackboard. Here there is zero anonymity because the contribution of each subject is very public.
        Average contributions to the group account were 44.8% (of the total amount) in the no-approval treatment and 72.8% in the approval treatment. So, subjects contributed a lot more when anonymity was removed.
        Similar results were obtained by James Andreoni and Ragan Petrie in a study entitled 'Public goods experiments without confidentiality'. Here, the novelty was to have photos of subjects together with their contributions to the group account, as in the picture below. In this case contributions increased from 26.9% in the absence of photos to 48.1% with photos. Again subjects contributed a lot more when anonymity was removed.

 
         So, why does anonymity matter? A study by Anya Samek and Roman Sheremeta, entitled 'Recognizing contributors' sheds some light on this. As well as treatments with no photos and everyone's photos they had treatments in which only the lowest and only the highest contributors had their photos displayed, as in the middle picture below.


          Again, photos made a big difference, increasing average contributions from 23.4% to 44.2%. Interestingly, displaying the photos of top contributors made little difference (up to 27.8%) while displaying the photos of the lowest contributors made a big difference (up to 44.9%). This would suggest that contributions increase without anonymity because subjects dislike being the lowest contributors. So, we are talking shame rather than pride.
       What do we learn from all this? Obviously we can learn interesting things by dropping anonymity.  In particular, we have learnt that contributions to group projects may be higher when individual contributions can be identified. Indeed, in a follow paper, entitled 'When identifying contributors is costly', Samek and Sheremeta show that the mere possibility of looking up photos increases contributions. That, though, raises some tough questions. If behavior is radically different without anonymity then is it good enough to keep on churning out results based on lab experiments with complete anonymity? I don't think it is. The three studies mentioned above have shown how anonymity can be dropped without compromising scientific rigor. More of that might be good. 

Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...

Prisoners dilemma or stag hunt

Over Christmas I had chance to read The Stag Hunt and the Evolution of Social Structure by Brian Skyrms. A nice read, very interesting and thought provoking. There’s a couple of things in the book that prompt further discussion. The one I want to focus on in this post is the distinction between the stag hunt game and the prisoners dilemma game.    To be sure what we are talking about, here is a specific version of both type of game. Adam and Eve independently need to decide whether to cooperate or defect. The payoff matrix details their payoff for any combination of choices, where the first number is the payoff of Adam and the second number the payoff of Eve. For example, in the Prisoners Dilemma, if Adam cooperates and Eve defects then Adam gets 65 and Eve gets 165. Prisoners Dilemma Eve Cooperate Defect Adam Cooperate 140, 140 65, 165 Defect 165,...