Skip to main content

Will a vote for Theresa May strengthen her bargaining hand?

As the run-up to the UK's snap general election continues, the Conservative party appear content to talk about one thing and one thing only - strong and stable leadership for Brexit negotiations. Throughout the campaign Theresa May has been particularly keen to claim that 'every vote for me strengthens my hand in the Brexit negotiations'. This claim seems to be going down well with voters. But does it make any sense?
          In bargaining theory the disagreement point is of critical importance. In the Brexit negotiations we can think of the disagreement point as the outcome if no deal is done between the UK and the EU and so the UK simply leaves the EU in March 2019 and starts from scratch. Most experts seem to agree that no deal would be bad - very bad for the UK and bad for the EU. That means that a deal is essential. It also means that the UK starts from a bad negotiating position. 
        To put some analysis to this consider the figure below. This plots the payoff of the EU and payoff of the UK depending on what deal is done. The blue line captures all the possible outcomes from a deal - some deals better for the UK and some for the EU. The bottom red dot captures the outcome if no deal is done. Note that if no deal is done then payoffs are well below the blue line - an agreement is good. Also, if no deal is done then the UK loses more than the EU - this puts the UK in a bad negotiating position. 

  
           In a world of calm deliberation the EU and UK could easily come to an agreement that is better than no deal. But, unfortunately, some Brexiters seem to have got over excited by the referendum win and started to believe their own rhetoric. In  particular, they are claiming that no deal is not that bad. This is encapsulated by Theresa May's claim that 'no deal is better than a bad deal'. This statement is either a tautology or a claim that no deal may be relatively good. Brexiters are also fond of claiming that no deal would be worse for the EU than the UK. So, returning to the figure, let the red Eurosceptic dot represent the 'optimistic' stance of Brexiters.
            Before she called an election, Theresa May had a small majority in parliament. That means it was going to be difficult to get anything through parliament that the eurosceptics did not like. And there is not much room for maneuver if you want do a deal better than the eurosceptic initial belief. Note, however, that this strengthened Theresa May's hand quite a lot. In particular, European politicians seemed keenly aware that it was going to be difficult to get any deal through the UK parliament. This means that they might have reluctantly had to make some concessions.
          What if Mrs May has a huge majority in parliament? Well, then anything will get through parliament and so we revert back to the actual disagreement point. The bigger the majority, therefore, the weaker is the UK's position. Ultimately, things are not so bad, because a Conservative majority makes it more likely a deal can be done. Indeed, Theresa May presumably called an election because it was becoming increasingly clear that Conservative backbenchers were going to make life very tough. This made no deal more likely.
         The trouble is, the rhetoric of the Brexiters seems to have no bound. This rhetoric is not convincing anyone in Europe but is being lapped up by much of the British press and public. If we go into these negotiations with a public who think the initial position is the top eurosceptic red dot then it may be difficult for any prime-minister, no matter how big the majority, to sell a deal. In other words, Britain seems to be walking into a cul-de-sac of disaster. The only crumb of comfort is that the UK economy seems to be showing the signs of Brexit. That may concentrate minds.     

Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...

Prisoners dilemma or stag hunt

Over Christmas I had chance to read The Stag Hunt and the Evolution of Social Structure by Brian Skyrms. A nice read, very interesting and thought provoking. There’s a couple of things in the book that prompt further discussion. The one I want to focus on in this post is the distinction between the stag hunt game and the prisoners dilemma game.    To be sure what we are talking about, here is a specific version of both type of game. Adam and Eve independently need to decide whether to cooperate or defect. The payoff matrix details their payoff for any combination of choices, where the first number is the payoff of Adam and the second number the payoff of Eve. For example, in the Prisoners Dilemma, if Adam cooperates and Eve defects then Adam gets 65 and Eve gets 165. Prisoners Dilemma Eve Cooperate Defect Adam Cooperate 140, 140 65, 165 Defect 165,...