Skip to main content

Some estimates of cross-price elasticity


The final part of this exciting trilogy is cross-price elasticity. (See here for estimates of own price and income elasticity.) Here we are looking for how demand for one product, say cars, is influenced by the price of another product, say petrol. The idea is to find a spread of examples from goods that are close substitutes (have cross price elasticity near 1) to strong complements (have an elasticity near -1).

Within the literature there are a lot more examples of substitutes, like cars and public transport, than of complements, like cars and petrol. Indeed, it was a bit of a struggle to find any complements. Here are the examples I converged on:



The book versus culture number is taken from the study by Ringstad and Loyland. The numbers for organic food are taken from the report by Bunte and co-authors on Dutch data. Those for alcohol are from a UK a study by Meng and co-authors.



For numbers of public transport in the UK there is a study by Paulley and co-authors.


The cocaine number is taken from the study by Petry. That brings us on to food. I was expecting to easily find numbers for food, and get some examples of complements. But my impression is that things have not really moved on much since the work of Angus Deaton in the 1980s. So, why not stick with those numbers, these taken from a study using Indonesian data.




Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Measuring risk aversion the Holt and Laury way

Attitudes to risk are a key ingredient in most economic decision making. It is vital, therefore, that we have some understanding of the distribution of risk preferences in the population. And ideally we need a simple way of eliciting risk preferences that can be used in the lab or field. Charles Holt and Susan Laury set out one way of doing in this in their 2002 paper ' Risk aversion and incentive effects '. While plenty of other ways of measuring risk aversion have been devised over the years I think it is safe to say that the Holt and Laury approach is the most commonly used (as the near 4000 citations to their paper testifies).           The basic approach taken by Holt and Laury is to offer an individual 10 choices like those in the table below. For each of the 10 choices the individual has to go for option A or option B. Most people go for option A in choice 1. And everyone should go for option B in choice 10. At some point, therefore, we expect the...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...