Skip to main content

Some estimates of cross-price elasticity


The final part of this exciting trilogy is cross-price elasticity. (See here for estimates of own price and income elasticity.) Here we are looking for how demand for one product, say cars, is influenced by the price of another product, say petrol. The idea is to find a spread of examples from goods that are close substitutes (have cross price elasticity near 1) to strong complements (have an elasticity near -1).

Within the literature there are a lot more examples of substitutes, like cars and public transport, than of complements, like cars and petrol. Indeed, it was a bit of a struggle to find any complements. Here are the examples I converged on:



The book versus culture number is taken from the study by Ringstad and Loyland. The numbers for organic food are taken from the report by Bunte and co-authors on Dutch data. Those for alcohol are from a UK a study by Meng and co-authors.



For numbers of public transport in the UK there is a study by Paulley and co-authors.


The cocaine number is taken from the study by Petry. That brings us on to food. I was expecting to easily find numbers for food, and get some examples of complements. But my impression is that things have not really moved on much since the work of Angus Deaton in the 1980s. So, why not stick with those numbers, these taken from a study using Indonesian data.




Comments

Popular posts from this blog

Revealed preference, WARP, SARP and GARP

The basic idea behind revealed preference is incredibly simple: we try to infer something useful about a person's preferences by observing the choices they make. The topic, however, confuses many a student and academic alike, particularly when we get on to WARP, SARP and GARP. So, let us see if we can make some sense of it all.           In trying to explain revealed preference I want to draw on a  study  by James Andreoni and John Miller published in Econometrica . They look at people's willingness to share money with another person. Specifically subjects were given questions like:  Q1. Divide 60 tokens: Hold _____ at $1 each and Pass _____ at $1 each.  In this case there were 60 tokens to split and each token was worth $1. So, for example, if they held 40 tokens and passed 20 then they would get $40 and the other person $20. Consider another question: Q2. D...

Nash bargaining solution

Following the tragic death of John Nash in May I thought it would be good to explain some of his main contributions to game theory. Where better to start than the Nash bargaining solution. This is surely one of the most beautiful results in game theory and was completely unprecedented. All the more remarkable that Nash came up with the idea at the start of his graduate studies!          The Nash solution is a 'solution' to a two-person bargaining problem . To illustrate, suppose we have Adam and Beth bargaining over how to split some surplus. If they fail to reach agreement they get payoffs €a and €b respectively. The pair (a, b) is called the disagreement point . If they agree then they can achieve any pair of payoffs within some set F of feasible payoff points . I'll give some examples later. For the problem to be interesting we need there to be some point (A, B) in F such that A > a and B > b. In...

Prisoners dilemma or stag hunt

Over Christmas I had chance to read The Stag Hunt and the Evolution of Social Structure by Brian Skyrms. A nice read, very interesting and thought provoking. There’s a couple of things in the book that prompt further discussion. The one I want to focus on in this post is the distinction between the stag hunt game and the prisoners dilemma game.    To be sure what we are talking about, here is a specific version of both type of game. Adam and Eve independently need to decide whether to cooperate or defect. The payoff matrix details their payoff for any combination of choices, where the first number is the payoff of Adam and the second number the payoff of Eve. For example, in the Prisoners Dilemma, if Adam cooperates and Eve defects then Adam gets 65 and Eve gets 165. Prisoners Dilemma Eve Cooperate Defect Adam Cooperate 140, 140 65, 165 Defect 165,...